Utilizing Real-Time Travel Information, Mobile Applications and Wearable Devices for Smart Public Transportation

Vincent T. F. Chow¹², Ka Wing Sung³, Helen M. Meng¹², Ka Ho Wong¹², Gary KS Leung¹, Yong-Hong Kuo¹ and Kelvin K. F. Tsoi¹⁴

 ¹Stanley Ho Big Data Decision Analytics Research Centre
²Department of Systems Engineering and Engineering Management
³Department of Statistics
⁴School of Public Health and Primary Care The Chinese University of Hong Kong

Latest Trends

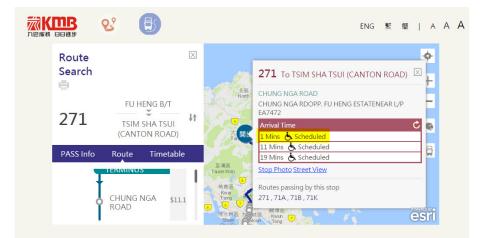
- Use of ICT and big data in public transportation
 - Demand forecasting [1][2]
 - Planning and operations management [3][4]
- Installing sensors on public transportation vehicles
 - Providing real-time approximate arrival times [5][6]
 - Disseminating information from over 20,000 stops

Motivation

- Enabling personal transportation management
- Aiding passengers' decisions
 - Saving time
 - Adapted to transportation disruption

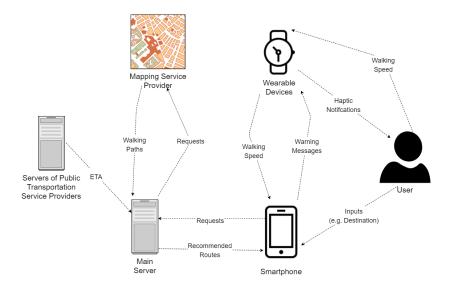
Motivation

- Existing public transport recommendation tools
 - Google Maps
 - Citymapper
- Not utilizing real-time traffic information
- Returning recommendations which are not personalized
- Lacking of real-time alternatives in dynamic situations
- Incorporating personalized life-style information when making recommendation?


Exemplary Implementation

Kowloon Motor Bus (KMB)

- Major bus service provider in New Territories and Kowloon
- A daily average of 2.66 million passenger trips
- Offering 377 routes
- Started disseminating arrival time information in 2015


Exemplary Implementation

Exemplary Implementation

- Dynamic data: estimated time of arrival (ETA)
- Static data
 - Routes details
 - Stops information
- Facilitating identification of stops nearby and possible routes
- Updated from time to time

Big Data Cloud Platform

Cloud Infrastructure

IBM Bluemix

- Platform-as-a-Service (PaaS)
- Used Python and Django in this study

Cloud Infrastructure

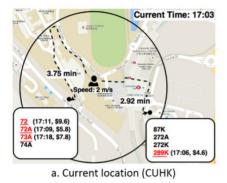
Docs	The Chinese University of US South : ttchow_cuhk : dev
😑 🔹 IBM Bluemix Clo	bud Foundry Apps 136 Catalog Support Account
← Dashboard	(PY) cba123999 Status: O Your app is running View App - C O
Getting Started	
Overview	Runtime
Runtime	
Connections	
Logs	
Monitoring	BUILDPACK INSTANCES GBS PER INSTANCE TOTAL GB ALLOCATION Python All instances are running Health is 100% 0 MBs still available @
	Connections (1) Runtime Cost
	availability-monitoring-auto
Waiting for login.ng.bluemix.net	\$25.98 \$25.98
CCBD 2016	Smart Public Transportation 2016-11-17 10

Wearable Devices

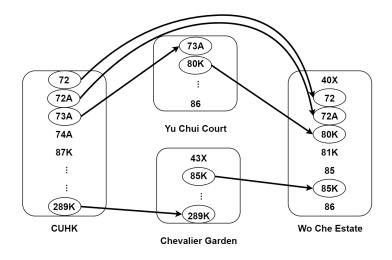
Microsoft Band

- Continually measuring user' walking speed
- Sending vibrating and visual notifications
- Displaying estimated arrival time

Wearable Devices


CCBD 2016

Wearable Devices


CCBD 2016

Example Scenario (CUHK \rightarrow Shatin)

Retrieving Possible Transit Routes

Path Choice Evaluation

- Choosing a path *p* to minimize the goodness measure $g_p = \alpha_1 T_p + \alpha_2 W_p + \alpha_3 N_p + \alpha_4 C_p$
 - Total journey time (T_p)
 - Total walking distance (*W_p*)
 - Number of transfers required (N_p)
 - Total travelling cost (C_p)
- Weights $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$: determined manually

Choice Evaluation

- Example weights: $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (10, 20, 1, 100)$
- Best choice: Route 72A

Option	Estimated total	Cost (\$)	Total walking	No. of bus	g_p
	journey time (min)		distance (m)	transfer	
Route 72	18.5	9.6	630	0	1007
Route 72A	16.17	5.8	630	0	907.7
Route 73A & 80K	61.17	12.9	630	1	1599.7
Route 289K & 85K	39.17	9.7	630	1	1215.7

Novel Features

- Helping users to manage personalized transportation
- Minimizing total waiting time
 - Using wearable devices to capture walking speed
 - Computing likelihood by GPS and ETA
 - Alerting users

Conclusion

- Facilitating personal transportation management by big data
- Utilizing real-time information with smartphones and wearable devices
- Optimizing users' travelling plan
- Expected to be utilized in other cities heavily relying on public transportation

Reference I

- Y. Ji, R. G. Mishalani, and M. R. McCord, "Transit passenger origin-destination flow estimation: Efficiently combining onboard survey and large automatic passenger count datasets," *Transportation Research Part C: Emerging Technologies*, vol. 58, Part B, pp. 178 192, 2015.
- N. V. Oort, T. Brands, and E. de Romph, "Short term ridership prediction in public transport by processing smart card data," in *Proceedings of the Transportation Research Board 94th Annual Meeting*, 2015, pp. 1−14.

Reference II

- N. V. Oort and O. Cats, "Improving public transport decision making, planning and operations by using big data: Cases from sweden and the netherlands," in *Proceedings of 2015 IEEE 18th International Conference on Intelligent Transportation Systems*, Sept 2015, pp. 19–24.
- J. M. Y. Leung, D. S. W. Lai, Y. H. Kuo, and H. K. F. Cheung, "Real-time integrated re-scheduling for public transit," in *Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance*, 2016.
- A. Rakotonirainy, T. D. Camacho, and M. Foth, "Pervasive technology and public transport: Opportunities beyond telematics," *IEEE Pervasive Computing*, vol. 12, no. 1, pp. 18–25, 2013.

Reference III

A. O. Tito, F. S. M. Borgiani, R. A. dos Santos, P. C. A. R. Tedesco, and A. C. Salgado, "Contextual information in user information systems in public transportation: A systematic review," in *2012 15th International IEEE Conference on Intelligent Transportation Systems*, Sept 2012, pp. 361–366. Methodology

Thank You!

CCBD 2016

2016-11-17 23 / 23